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Within the reelm of drug design, the stereospecific incorporation of
polyfluorinated akyl subgtituentsisapowerful and widdly employed tactic
to enhance binding selectivity, devate lipophilicity, and/or circumvent
metabolism issues arising fromin vivo C—H bond oxidation. In particular,
the catalytic production of CFs-containing stereogenicity has become a
methodological god of centrd importance to practitioners of chemica
and pharmaceutical synthesis® Recently, we reported the first highly
enantiosdective a-trifluoromethylation of adehydes using photoredox
organocatayss, a protocol that employs fluorescent household lights to
generde - CF; radicas that can intercept Sereofacialy biased enamines
(eq 1).2 In this communication, we describe a new mechanitic (non-
photolytic) gpproach to the same product class via the merger of Lewis
acid and organocataysis with an eectrophilic trifluoromethyl akylating
reagent (eq 2).3* Through this alternative chemical pathway, enantioen-
riched a-trifluoromethylated ddehydes (and o-CF; carbonyl building
blocks) can be generated under mild reaction conditions usng com-
merdialy available® bench-stable® reagents and cataysts without the
requirement of alight source.

Trifluoromethyl Synthons: Novel Approaches to Stereogenic CF3
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Photoredox Organocatalysis: Weak Light CF; Generation (eq 1)?
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Ingpired by the recent studies of Togni, we hypothesized that 3,3
dimethyl-1-trifluoromethyl-1,2-benziodoxole (Togni’s reagent, 1) might
function as a trifluoromethylation agent for enamine-activated adehydes
in a manner andogous to that observed for the racemic a-akylation of
nitroesters, B-ketoesters, silyl enol ethers, and silyl ketene acetals® Since
lisgenerdly conddered to be an dectrophilic speciestheat enablesC—CF;
bond formation via.an iodonium addition/reductive dimination mechanism,
we fdt tha such hypervaent iodonic resgents might aso function
successully in enamine catalysis” As desoribed in Scheme 1, we
envisoned that 1 should undergo Lewis acid-catalyzed bond cleavage to
generate the highly dectrophilic iodonium sdt 2. At the same time,
condensation of amine catdyst 3 with an ddehyde substrate should
generate achird enamine 4 that is sufficiently s--electron-rich to participate
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Scheme 1. Proposed Mechanism for Direct a-Trifluoromethylation
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in an enantiosdective C—I bond formation with 2 via a dosed-shdll
pathway. In accord with similar mechanisms described by Togni® and
Baran,® we expected the resulting A3-iodane species 5 to rapidly undergo
reductive dimination with stereoretentive akyl transfer, a step that would
forgethe criticl C—CF; bond. Bifurcation of iminiumion 6 viahydrolyss
would then liberate the imidazolidinone catays 3 dong with the desired
o-formyl CF5 product. As described in previous studies,® we presumed
that high levels of enantioinduction should be possible using catayst 3
on the bass of enamine olefin geometry control and sdlective S-facid
exposure (via benzyl shielding of the Re face of enamine 4).

The proposed a-formyl trifluoromethylation was first evaluated using
hydrocinnamal dehyde, imidazolidinone 3, and a series of Lewis acids at
—20 °C (Table 1). To our delight, this new transformation was found to

Table 1. Effect of the Lewis Acid Catalyst on a-Trifluoromethylation

CFy—I——0

o] [}

H)S Ve 20 mol% 3¢TFA y CFs
Me 10 mol% Lewis acid
Bn CHCl,, —20 °C Bn
aldehyde Togni's reagent o-CFj aldehyde
entry Lewis acid % yield? % ee?

1 none 14 92

2 FeCls 7 89

3 CuCl,® 39 87

4 Sc(OTf)s 48 64

5 Zn(NTf2)2 52 66

6 Sm(OTf)3 66 53

7 FeCl, 80 87

8 FeCl, + tert-amyl alcohol 76 91

9 CucCl® 86 94

aDetermined by ™F NMR spectroscopy using an internal standard.
b Enantiomeric excess was determined by chird HPLC andysis of the
corresponding alcohol. © Using 5 mol % Lewis acid.
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Table 2. Scope of Catalytic Enantioselective a-Trifluoromethylation
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81% yield, 94% ee 87% vield, 96% ee 78% yield, 93% ee
o (o] (o]
4 H CF; 54 i CFy € 4 CF4
)2 )2 )a
COLE OBn NHCbz

79% vield, 93% ee T7% yield, 93% ce 85% yield, 96% ee
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CF. gd CF 94 CF
7 H 3 H 3 H 3
)2
NPhth W

T1% vield, 96% ece 72% yield.© 94% ee

70% yield,® 97% ee 76% yield, >20:1 dr T74% yield, 19:1 dr

a Stereochemistry assigned by chemical correlation or analogy. ° Isolated
yield of the corresponding acohol. ©Enantiomeric excess determined by
chird HPLC or SFC anaysis. “ Performed using FeCl, (10 mol %) and
tert-amyl alcohol. © Yield determined by *°F NMR spectroscopy.

be both high yidding and enantiosdlective using cataytic Fe(ll) or Cu(l)
sdts. Interestingly, the use of stronger Lewis acids led to markedly lower
levels of enantiomeric excess, presumably because of a post-reection
racemization pathway. Indeed, the addition of tert-amyl acohol wasfound
to rescue the product optica purity in the case of the FeCl, system
(presumably via in situ hemiacetal formation; entries 7 and 8).%° The
superior levels of enantiocontrol and reaction yield obtained with CuCl
and imidazolidinone 3 a —20 °C prompted us to sdlect these condiitions
for further exploration.

As highlighted in Table 2, these mild Lewis acid—organocataytic
conditions tolerate awide range of functiond groupsin this a-trifluorom-
ethylation protocol, including aryl rings, ethers, esters, carbamates, and
imides (entries 1—8; 71—87% yidld, 93—96% eg). Sericaly demanding
ddehydes (R = 4-piperidinyl, cyclohexyl, adamantyl) were dso accom-
modated with little impact on the yield or enantiocontrol (entries 8—10;
70—80% yield, 94—97% ee). In addition, enantiopure S-chird subgtrates
can be used for the diasterensdective construction of ether the syn- or
anti-o.5-disubdtituted products, highlighting the remarkable catalyst control
of these dkylations (entries 11 and 12; 19—20:1 dfr). It should be noted
that catdyst 3 was ineffective in our photolytic trifluoromethylaion
studies,®® providing further evidence that the protocol described herein
does not involve aradica pathway.

Scheme 2. Access to Enantioenriched Trifluoromethyl Synthons
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To highlight the utility of enantioenriched a-CF; aldehydes, we
undertook their conversion to a variety of valuable organofluorine
synthons. As outlined in Scheme 2, in situ reduction or oxidation
of the formyl group creates enantioenriched j3-CF; acohols or
o-CF3 carboxylic acids with excellent stereofidelity. Moreover,
reductive amination of these o-CF; aldehydes provides f3-CF;
amines with only a slight reduction in optical purity (86% e€).

In summary, we have introduced a new mechanistic approach to
the enantioselective o-trifluoromethylation of aldehydes using only
commercidly available reagents. We expect that this paradigm of
merging asymmetric organocataysis (and Lewis acids) with iodonium
salts will be broadly useful across many reaction types.
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